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1. Abstract 23 

Purpose: To examine the ability of multivariate models to predict the HR responses to some 24 

specific training drills from various GPS variables and to examine the usefulness of the 25 

difference in predicted vs actual HR responses as an index of fitness or readiness to perform.  26 

Method: All data were collected during one season (2016-2017) with players’ soccer activity 27 

recorded using 5-Hz GPS and internal load monitored using heart rate (HR). GPS and HR 28 

data were analysed during typical small-sided games and a 4-min standardized submaximal 29 

run (12 km/h). A multiple stepwise regression analysis was carried out to identify which 30 

combinations of GPS variables showed the largest correlations with HR responses at the 31 

individual level (HRACT, 149±46 GPS/HR pairs per player) and was further used to predict 32 

HR during individual drills (HRPRED). HR predicted was then compared with actual HR to 33 

compute an index of fitness or readiness to perform (HRΔ,%). The validity of HRΔ was 34 

examined while comparing changes in HRΔ with the changes in HR responses to a 35 

submaximal run (HRRUN, fitness criterion) and as a function of the different phases of the 36 

season (with fitness being expected to increase after the pre-season).  37 

Results: HRPRED was very largely correlated with HRACT (r=0.78±0.04). Within-player 38 

changes in HRΔ were largely correlated with within-player changes in HRRUN (r=0.66,0.50-39 

0.82). HRΔ very likely decreased from July to August (3.1±2.0 vs 0.8±2.2%) and most likely 40 

decreased further in September (-1.5±2.1%). 41 

Conclusion: HRΔ is a valid variable to monitor elite soccer players’ fitness and allows fitness 42 

monitoring on a daily basis during normal practice, decreasing the need for formal testing. 43 

Key words: Small-sided games, soccer, fitness monitoring, GPS 44 

  45 



2. Introduction: 46 

 47 

The monitoring of various training variables that may help to gain insight into players’ 48 

training status is of major interest for most supporting staff in elite team sports. Today, a large 49 

range of variables can be used to monitor both external and internal load, and in turn, infer on 50 

players’ fitness, fatigue and/or readiness to perform.1 However, typical metrics such as 51 

distance covered in different speed zones or heart rate-related variables analyzed in isolation 52 

are often more influenced by contextual variables than players’ training status per se.2 As 53 

such, there is still a need for more robust monitoring variables and/or analyses1 that could be 54 

used with confidence, irrespective of the daily training context. 55 

To overcome the limitations inherent to the use of those latter variables, examining the 56 

dose-response relationship between work load and immediate physiological responses (or 57 

more simply generic models of work efficiency, i.e., output/cost relationships) may represent 58 

the first advances to assess training status from data collected routinely in elite players. The 59 

simplest way to assess players’ locomotor work efficiency is likely to use ratios between 60 

typical internal and external load measures,3 with the lower the ratio, the greater the 61 

efficiency. Recently, such ratios have been used in the context of elite soccer to assess either 62 

the overall acclimatization and fatigue trends during a training camp in a hot environment 63 

(very likely large increases in RPE/m.min-1 during the first two days in Asia (fatigue), trend of 64 

-0.4 RPE/m.min-1 decreased from D1 to D8 (acclimatization phase))4, fitness changes 65 

following a two-week pre-season training period (changes in Total distance (TD)/ Heart rate 66 

(HR) were largely correlated with the velocity at lactate threshold (r=-0.69), a measure of 67 

aerobic fitness)5 or running efficiency during official games (TD/HR was very likely slightly 68 

decreased during the second half vs the first half (~-4.4%)).6 While these studies have 69 

suggested that internal-to-external load ratios could be used as a measure of fitness or 70 

readiness to perform, there remain several limitations to those studies. In these three studies, 71 

TD was used as the unique measure of external load. It is well-know that during soccer 72 

practice, overall running distance is a poor marker of locomotor demands.7 As such, it is 73 

intuitive to think that the inclusion of other locomotor variables such as high-speed running, 74 

acceleration counts or mechanical load2 into those analyses may provide better estimates of 75 

training status.8 In the only study examining the relationships between those external training 76 

load variables and HR responses to training drills in professional rugby league players,3 large-77 

to-almost perfects relationships were reported between external-to-internal load ratios and 78 



measures of fitness or load. However, since several non-training related characteristics (e.g., 79 

playing experience, playing position or overall fitness level) likely affect the relationship 80 

between internal and external load at an individual level,9 the relevance of any external load 81 

metrics to predict internal load is likely player-specific. Therefore, individual models 82 

including player-specific combinations of external-load variables (e.g., TD, HS, mechanical 83 

work) may be superior to team-average based models for the assessment of players’ fitness 84 

when using data collected during training sessions. 85 

The first aim of the present paper was to quantify in 10 elite soccer players the 86 

individual relationships (i.e., multivariate models) between various field-based external load 87 

measures (i.e., locomotor activity during small-sided games) tracked with global positioning 88 

system (GPS) and an objective measure of internal load (i.e., HR response to the same drills). 89 

The second aim was to examine the ability of each individual model to predict the HR 90 

responses to some specific training drills from various GPS variables. The third aim of the 91 

present study was then to examine the usefulness of the difference between predicted vs 92 

actual HR responses as an index of fitness or readiness to perform. If useful enough, this new 93 

metric would allow the assessment of players’ fitness every time a small-sided game is 94 

performed, during normal practice, removing the need for formal testing sessions. 95 

 96 

3. Methods: 97 

Participants 98 

Data were collected in 10 field players (26±5 years; 182±6 cm; 76±5 kg; max heart 99 

rate: 198±10 bpm (assessed during the 30-15 Intermittent Fitness Test)10) belonging to an elite 100 

French football team. During this period, none of the players suffered from an injury 101 

requesting to stop training for more than 1 week. These data arose from the daily monitoring 102 

in which player activities are routinely measured over the course of the season. Therefore, 103 

ethics committee clearance was not required.11 The study conformed nevertheless to the 104 

recommendations of the Declaration of Helsinki. 105 

Methodology 106 

Data collection: 107 

 All training data were collected during typical training sessions (AM or PM sessions, 108 

Heat index: 16°, range: 0-33°) during one season (2016-2017) with players’ activity recorded 109 



using 5-Hz GPS and 100 Hz accelerometers (SPI-Pro, Team AMS R1 2016.8, GPSport, 110 

Canberra, Australia) and further analysed using the Athletic Data Innovations analyser (ADI, 111 

v5.4.1.514, Sydney, Australia) to derive total distance (TD, m), high-speed distance (HS, 112 

distance above 14.4 km.h-1, m), very-high speed distance (VHS, distance above 19.8 km.h-1, 113 

m), velocity and force load (vL and fL respectively, a.u) and mechanical work (MechW, a.u). 114 

Velocity load refers to the sum of distance covered weighted by the speed of displacement. 115 

Force load refers to the sum of estimated ground reaction forces during all foot impacts, 116 

assessed via the accelerometer-derived magnitude vector.2 Mechanical work is an overall 117 

measure of velocity changes and is computed using >2.ms-2 accelerations, decelerations and 118 

changes of direction events.12 In average, 9±1 satellites were connected during each training 119 

session. Players used consistently the same unit to decrease measurement error.13
 Heart rate 120 

was monitored using Polar H1 units (Polar, Kempele, Finland), synchronized with GPS and 121 

further analyzed using the ADI analyzer to derive mean heart rate (HR) during each drill. 122 

Heart rate and GPS data were analysed during typical small-sided games (SSGs) and a 123 

standardized submaximal run. The SSGs included for analyses were the following: 5v5, 6v6, 124 

7v7, 8v8, 9v9 and 10v10 played as game simulations (with goal keepers) or possession drills; 125 

surface area per player: 117±65 m2/player.12 A standardized submaximal run (12 km/h paced 126 

with an acoustic reference, over a 50 ×100-m rectangle course) was performed 4±1 times 127 

throughout the pre-season and early in-season. The average HR during the last minute of the 128 

run was used for analysis.14 All training sessions were performed on the same hybrid pitch 129 

(DESSO GrassMaster, Tarkett, Nanterre, France), with a mean pitch hardness value 130 

(measured with Clegg Impact soil tester – 2.5 kg) of 74±4 [range: 70-82]. Data were then 131 

normalised relative to the drill duration.  132 

 133 

Analyses: 134 

Model building 135 

A mean of 149±46 [range: 84-230] observations per player (2±1 per session) were used to 136 

build individuals models. A multiple stepwise bidirectional regression analysis was carried 137 

out to identify which combinations of GPS-related variables (TD, HS, VHS, vL, fL, MechW) 138 

showed the largest correlations with HR responses.  139 

Within-player models were created using R statistical software (R v3.4.1, R Foundation for 140 

Statistical Computing) using the step function of the MASS package (v7.3-47). Then, the 141 



relative importance of each GPS variables was calculated using the calc.relimp function from 142 

the relaimpo package (v2.2.-2). Predicted HR (HRPRED) was subsequently calculated for each 143 

SSGs from the different GPS variables. Because of the likely effect of heat on HR responses, 144 

HRPRED was further adjusted for changes in temperature (heat index, Weather tracker, Kestrel 145 

4500 NV, Kestrel Weather instrument, Minneapolis, USA) as follow (Eq 1): 146 

Eq 1: HRPRED (%) = HRPRED (unadjusted) + 0.075*(Heat Index-Heat IndexMEAN) with Heat 147 

IndexMEAN standing for the mean heat index over the period of interest (season 16/17).15 Here 148 

are two examples of individual models (Eq 2 and Eq 3) aimed at predicting HRPRED: 149 

Eq 2: P3: HRPRED (%) = 51.52 + 1.47*fL + 0.44*VHS + 7.11*MechW + 0.075*(Heat Index-150 

Heat IndexMEAN) 151 

Eq 3: P10: HRPRED (%) = 49.18 - 0.41*TD + 3.50*vL + 3.65*fL + 7.31*MechW + 152 

0.075*(Heat Index-Heat IndexMEAN) 153 

The actual HR (HRACT) response was finally compared with HRPRED for each SSG, and 154 

expressed as a percentage difference to compute HRΔ (Eq 4), with the higher the difference, 155 

the lower the fitness (e.g. when HRACT > HRPRED, HRΔ values are positive, which suggests a 156 

lower fitness than usual).  157 

Eq 4: HRΔ (%) = HRACT - HRPRED 158 

It is worth mentioning that the training dataset used to build individual models was the same 159 

than the dataset used for HR prediction, possibly leading to overfitting. We are nevertheless 160 

confident in the results presented in this study since a comparison with similar models build 161 

using data from previous seasons (e.g., season 15/16, personal communication) yielded 162 

similar results. 163 

Model validation 164 

The validity of HRΔ to predict players’ fitness and readiness to perform was examined using 2 165 

different approaches, i.e., while examining its change 1) in comparison with an objective 166 

(criterion) measure of fitness (i.e., HR responses to a submax run14) and 2) as a function of the 167 

different seasonal phases (pre-season (July), early in-season (August) and in-season 168 

(September)). 169 

In fact, in young soccer players, individual decreases in HR responses to such a submaximal 170 

running test were associated with very likely improvements in aerobic fitness.16 HR responses 171 

to this submaximal run (HRRUN) were also adjusted for temperature as shown in Eq 1. 172 



Relationships between within-player changes in HRRUN and within-player changes in the 173 

mean HRΔ recorded ±3 days before or after the HRRUN were used to assess the concurrent 174 

validity of HRΔ to estimate players’ fitness. This period of 3 days corresponds to the average 175 

number of days between two games, representing our typical training microcycles. 176 

Second, we examined changes in HRΔ throughout the pre-season. In fact, there is generally a 177 

progressive increase in fitness from pre-season to early in-season, as evidenced by small-to-178 

moderate increases in high-intensity running performance (Yo-Yo intermittent recovery level 179 

2) and decreased HR responses to submaximal exercise tests (Yo-Yo IR1 test).17,18 It was 180 

therefore hypothesized that if HRΔ was to be a good indicator of players’ fitness and readiness 181 

to perform, a progressive decrease would be expected from July (pre-season) to August (end 182 

of pre-season, start of the season) and September (early in-season). The average HRΔ over 183 

each month was used to assess the between-months changes in HRΔ. While we are well aware 184 

of the limitations of HR responses to inform on the actual metabolic cost (mostly oxidative) of 185 

exercise, especially during intermittent exercise,19 it is important to note that assessing such 186 

an absolute oxidative contribution to exercise is not an objective of our study. We were rather 187 

simply making the assumption that changes in HR responses relative to some specific 188 

locomotor demands may be reflective of changes in fitness/readiness to perform. For that 189 

reason, we believe that the above-mentioned limitations of HR during intermittent exercise 190 

are not problematic.3,5,6 191 

Statistical analysis 192 

Data in the text, tables, and figures are presented as means with standard deviations (SD) and 193 

90% confidence limits/intervals (CL/CI). The typical error of estimate (TEE) of the 194 

predictions as well as regression coefficient (r) was calculated for each player to assess the 195 

accuracy of the model.20 The following criteria were adopted to interpret the magnitude of the 196 

correlation (r, 90% CI): ≤0.1, trivial; >0.1 to 0.3, small; >0.3 to 0.5, moderate; >0.5 to 0.7, 197 

large; >0.7 to 0.9, very large; and >0.9 to 1.0, almost perfect. Between-months changes in the 198 

HRΔ were examined using standardized differences, based on Cohen’s d effect size principle. 199 

The scale was as follows: 25−75%, possible; 75−95%, likely; 95−99%, very likely; >99%, 200 

almost certain. Threshold values for standardized differences were >0.2 (small), >0.6 201 

(moderate), >1.2 (large) and very large (>2). If the 90% CI overlapped small positive and 202 

negative values, the magnitude was deemed unclear; otherwise, that magnitude was deemed 203 

to be the observed magnitude.21 Probabilities were used to make a qualitative probabilistic 204 

mechanistic inference about the true differences in the changes, which were assessed in 205 



comparison to the smallest worthwhile difference (SWD) which was set as 0.2 of the TEE.20 206 

When monitoring individuals, longitudinal changes are generally considered substantial when 207 

the probabilities for changes are ≥75%, which occurs when the difference is greater than the 208 

sum of the SWD and the typical error of measurement22 (TE; from reliability studies = ~3%).  209 

 210 

4. Results: 211 

The average TEE for the 10 individual multiple regression analyses was 2.9±0.3 % [range: 212 

2.5-3.5 %] with HRPRED being very largely correlated with HRACT (r=0.78±0.04 [range: 0.74-213 

0.84]) (Figure 1).  214 

Figure 2 showed that fL, MechW, vL, and TD shared the greatest part of the variance in the 215 

regression analysis (31±17, 24±8, 18±7 and 16±12% respectively).  216 

Figure 3 presents the mechanical work performed during the pre-season and early in-season 217 

(upper panel) and corresponding HRΔ and HRRUN (lower panel) in one elite soccer player. 218 

Overall, HRΔ was substantially greater than zero (i.e., HRACT > HRPRED) during the first 15 219 

days of training (average HRΔ over the 15 days: +5.2±3.3%), with a substantial trend for a 220 

decrease in HRΔ throughout this period (from D1 to D15, -0.5 HRΔ / day. HRΔ). Additionally, 221 

HRΔ was substantially lower than zero (i.e., HRACT < HRPRED) after day 75 (average HRΔ 222 

from day 75 to day 150: -4.9±6.9%). Overall, except for 1 point (day 45), there was a good 223 

agreement between the changes in HRΔ and HRRUN. 224 

Within-player changes in HRΔ were largely correlated with within-player changes in HRRUN 225 

(r, 90% CI=0.66, 0.50-0.82) (Figure 4). 226 

HRΔ very likely decreased from July to August (3.1±2.0 vs 0.8±2.2%; ES= -0.99±0.64; 227 

0/3/97) and most likely decreased further in September (3.1±2.0 vs -1.5±2.1%; -1.96±0.95; 228 

0/0/100). HRΔ likely decreased from August to September (0.8±2.2 vs -1.5±2.1 %, -229 

0.98±0.88, 2/5/95). 230 

 231 

5. Discussion: 232 

The aim of the present study was to quantify the relationships between various measures of 233 

external (GPS variables) and internal (HR) load measures in elite soccer players and assess if 234 

the differences between the HR predicted from GPS variables and that actually measured (i.e., 235 



HRΔ) could be used to infer on players’ fitness and readiness to perform. The key findings 236 

were the following: (1) HR responses during small-sided-games (HRACT) were largely related 237 

to locomotor activity (GPS variables) (Figure 1), with fL and MechW sharing the greatest part 238 

of the variance in the model (Figure 2), (2) within-player changes in HRΔ were largely 239 

correlated with those in HRRUN (Figure 4) and (3) HRΔ decreased progressively from the pre-240 

season to early in-season (Figure 5).  241 

Model construction 242 

Our results reported that the HRs predicted from GPS variables during SSGs were very 243 

largely correlated (r=0.78±0.04) with the HR responses actually measured (Figure 1). 244 

Furthermore, we observed that while fL and MechW were the greatest predictors of HR 245 

responses (31±17 and 24±8% respectively), TD and high-speed related variables explained 246 

less than 30% of the total variance (16±12%, 5±6 and 6±7% for TD, HS and VHS 247 

respectively). More specifically, for a player-equation based on fL, VHS and MechW (Eq 2), 248 

a 20% increase in either MechW or VHS would be expected to lead to a 2.4% or 0.5% 249 

increase in HR response respectively. Interestingly, while a majority of studies have focused 250 

on the relationships between relative distance (m.min-1) or locomotor-related measures (high-251 

speed and total distance) and HR,23 our results demonstrated that HR during football-specific 252 

training drills is more related to the mechanical demands of the task (acceleration, 253 

decelerations, and changes of direction). Our results confirmed the major importance of 254 

mechanical work and force load when estimating internal load2 and the necessity of taking 255 

into account these two variables when assessing load and in turn, planning training.  256 

While group-responses are helpful to understand the overall relationships between internal 257 

and external load, substantial between-players variations in this relationship were reported in 258 

this study (Figure 2). Indeed, while MechW shared the greatest part of the variance at a group 259 

level (24%), at individual level MechW accounted for 12 to 34% of the variance of HRACT. 260 

On the other side, while TD only accounted for 16% of the variance at the team level, 261 

individual values ranged from 0 to 34%. As such, it is important for each player to be treated 262 

individually when building models examining the training response. Indeed, factors such as 263 

fitness,5 neuromuscular capacity, playing position or playing experience9 can modify the way 264 

external load is related to internal load. This result has several implications for training 265 

plannification and further highlights the need for practitioners to assess and monitor training 266 

loads at the individual level. For example, given the very large between-player differences in 267 

the locomotor/HR responses relationships (Figure 2), it is likely that players’ HR would 268 



respond differently to different types of drills. There may be players for whom high levels of 269 

HR may be better reached through increased MechW.min-1 (as with SSGs including a low 270 

number of players over small spaces), while for others, through increased in HS running 271 

(larger number of players and more running space, or run-based interval training). 272 

 273 

Case study example. 274 

To interpret clear individual changes in HRΔ, it is necessary to know the minimum difference 275 

that maters, i.e., that can be assessed with a probability of at least 75% (SWD+TE22). In the 276 

present study, the SWD for the different individual models ranged from 0.5 to 0.7%. 277 

Considering that the TE of HR during training bouts is about 3%,14 changes of at least ~4% 278 

(SWD ~1% + TE 3%) were required to ensure that changes in HRΔ were real at the individual 279 

level. It is, however, worth noting that this required 4% difference can be decreased with 280 

repeated measurements, improving the sensitivity of the monitoring. In fact, since the TE is 281 

inversely related to the number of measurements performed (TE decreases as a factor of √𝑛 282 

measures),24 practitioners can decrease the 3% value by pooling multiple drills performed in 283 

the same session or pooling multiple sessions. In Figure 4, TE was adjusted on the number of 284 

distinct SSGs performed during each session (between 1 to 4). Based on these data, we were 285 

able to easily assess changes in HRΔ and HRRUN during pre-season and early in-season. In this 286 

case study, HRΔ clearly decreased during the 15 first days of the pre-season, likely reflecting 287 

the expected fitness improvement. Also, it is noteworthy that changes in HRΔ were 288 

concomitant with those in HRRUN, expect at 1 time-point (i.e., day 45) where the change in 289 

HRRUN was unclear while that in HRΔ was clearly above 0. While data are lacking to explain 290 

this unique dissociation between HRΔ and HRRUN, acute change in hydration status and 291 

plasma/fluids shifts can sometimes cause large changes in HR from a day to another 292 

independently of fitness.25  293 

Association between HRΔ and HRRUN 294 

Our results reported that within-player changes in HRΔ were moderately correlated with 295 

within-player changes in HRRUN (used as a criterion measure of fitness, r=0.66, 0.50-0.82, 296 

Figure 4), confirming the potential of HRΔ to inform practitioners on changes in player’s 297 

fitness through the season when only looking at HR responses to SSGs. However, while the 298 

fact that the correlation was not perfect could be seen as a limitation of the usefulness of HRΔ, 299 

it is in contrast, in fact, a very good point, i.e., it suggests that HRΔ may reflect something 300 



slightly different than HRRUN. We belive that the four quadrans defined by the 2 axes in 301 

Figure 4 could be used to infer on players specific needs in terms of conditioning. It is 302 

generally believed that fitness (as many other physical capacities) can be regarded from two 303 

different angles, a general component mostly related to cardiopulmonary performance during 304 

generic types of exercise bouts (i.e, straight-line running such as during the submaximal run), 305 

vs. a soccer-specific fitness with a greater neuromuscular component, which relates to the 306 

ability to perform and repeat specific types of locomotor actions such as repeated 307 

accelerations, decelerations, changes of directions (as during SGGs).26 Following these lines, 308 

and while still hypothetical given the low number of players examined and the limited time 309 

window analyzed (i.e., 1 season), it could be hypothesized that while HRRUN may be used as 310 

an index of generic fitness, HRΔ could be more used as a measure of soccer-specific fitness. 311 

In fact, when it comes to pre-season conditioning,26 players generally transition from unfit 312 

(top right quadran, both HRΔ and HRRUN lower than usual) to generally fit (mid pre-season, 313 

top left quadran, HRRUN improved but not HRΔ), before becoming specifically fit at the end of 314 

the pre-season (bottom left quadran, both HRΔ and HRRUN improved). Interestingly and in line 315 

with our proposal, it is noteworthy that there was no players reported in the bottom-right hand 316 

corner, suggesting that generic fitness is needed to build football-specific fitness. Analysed in 317 

light of HRRUN performance, HRΔ could provide key information for practitioners to better 318 

understand when a player needs more generic running conditioning (e.g. during early pre-319 

season or after an injury) vs. more soccer-specific training (e.g. high mechanical work 320 

tolerance, specific strength training, actions with the ball more generally in-season). 321 

Changes in HRΔ from the pre-season to early in-season 322 

Interestingly, we also observed a progressive decrease in HRΔ from July to August and then 323 

September (Figure 5). Since players fitness generally moderately increases from the pre-324 

season to early in-season (moderate increases in YoYo IR2 performance in elite football 325 

players; ES=~0.80),17 the corresponding large change in HRΔ (ES=1.96±0.95) confirms again 326 

its sensitivity to changes in fitness. The monitoring of HRΔ on a regular basis could probably 327 

allow practitioners to assess whether players are gaining fitness (or not) throughout the pre-328 

season and early in-season, while external or internal load measures used separately cannot. 329 

This new model might provide practitioners with a simple tool to better understand the dose-330 

response relationship between training load and fitness, and allow the monitoring of players’ 331 

fitness at a higher frequency, i.e., every time a SSG is performed (almost daily) and most 332 

importantly, during normal practice (no formal testing needed!). 333 



Limitations. 334 

First, the present monitoring approach can’t be used with players with only limited historical 335 

data (e.g., for new signings some time to build the models is needed (≥ 60 data points,27 ~ 6-8 336 

weeks). Second, players need to be compliant with wearing heart rate belt during training, 337 

which is not always without complications. Third, erroneous heart-rate is common during 338 

team sport training (e.g., due to shocks and contacts), which can result in erroneous HR 339 

interpretations if care is not applied to correct each individual files, potentially biasing the 340 

fitness estimates. We also agree that timing of the SSG both during the session and the week 341 

may affect the actual relationships between locomotor activity and HR responses (i.e., for the 342 

same external work, HR may be higher during SGGs performed at the end of a session as a 343 

consequence of a possible cardiac drift,28 or lower the day following a heavy session as a 344 

consequence of a likely plasma volume expansion.29 This could not be accounted for in the 345 

present study and have likely decreased the magnitude of the associations between GPS 346 

variable and HR responses. We nevertheless believe that the monitoring of trends in HRΔ 347 

changes (rather than day-to-day, isolated changes) should partially overcome this limitation. It 348 

is also worth noting that GPS with a greater sampling frequency may allow the collection of 349 

more reliable data,30 which in final may increase the strength of the relationships observed 350 

between GPS variables and HR responses. The models presented in the present study may 351 

become more robust in the future with the use of more advanced technology.  352 

6. Practical applications 353 

 354 

(1) Mechanical work and force load are the greatest predictors of the HR 355 

responses to SSGs, highlighting the importance of taking into account these 356 

two GPS/accelerometers-derived variables when assessing load and planning 357 

training 358 

(2) HRΔ, computed from both external (GPS) and internal (HR) load variables can 359 

be used to track players’ fitness through the pre-season and early in-season. A 360 

moderate ~4% decrease in HRΔ (similar to a ~5% decrease in HRRUN) (Figure 361 

4) is likely indicative of ~4% increase in maximal aerobic speed (0.5 km.h-1).16 362 

(3) This approach allows a monitoring on a daily basis during normal practice, 363 

eliminating the need for formal fitness testing. 364 

(4) Used together, HRRUN and HRΔ can be used to define players conditioning 365 

needs (e.g., generic vs. soccer-specific-fitness). 366 

 367 

7. Conclusions 368 

In this paper, we saw large and player-dependent associations between the HR responses to 369 

SSGs and some of the locomotor/mechanical demands of those SSGs as assessed via GPS and 370 



accelerometers. We then demonstrated that HRΔ (i.e, the difference between the predicted and 371 

actual HR responses to SSGs) can be confidently used to track players’ fitness throughout the 372 

season while using data collected during game-play only. While further larger scale studies 373 

are needed to confirm our preliminary results, these findings open new opportunities for 374 

practitioners willing to monitor players’ fitness on a regular basis, decreasing the need for 375 

formal testing. 376 

 377 

 378 

 379 

  380 
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 473 

Figure 1 Relationship between predicted HR from GPS data and actual HR.  474 

Data are presented as mean±standard deviation [range]. Blue ligne and dashed lines: Linear fit with 90% confidence 475 
intervals. TEE: Standard error of the estimate. HRPRED: Predicted heart rate. HRACT: Actual heart rate. Colors and shapes 476 
are set for each player. 477 
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 480 

Figure 2: Relative contribution of the global positioning system variables to heart rate responses 481 
during small-sided games (multiple regression analysis models for each individual player). 482 

TD: Total distance (m.min-1), HS: Distance>14.4 km.h (m.min-1), VHS: Distance>19.8 km.h -m.min-1), vL: Velocity load 483 
(a.u.min-1), fL: Force load (a.u.min-1); MW: Mechanical work (a.u.min-1). P1 to P10: Player 1 to 10 484 
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 487 

Figure 3: Changes in Mechanical Work (a.u, upper panel), HRΔ and HRRUN (lower panel) during pre-488 

season and early in season in one representative elite soccer player. This player was chosen over the 9 489 

others for different reasons, including the fact that he didn’t suffer from any major injuries, which 490 

allowed to get some data continuously throughout the entire year. 491 

Upper panel: grey bar: training session; black bar: match. 492 

Lower panel: Red point:75% of substantial increase in HRΔ and HRRUN.  Blue point:75% of substantial decrease in HRΔ and 493 
HRRUN. Grey point: unclear changes in HRΔ and HRRUN. Grey area stands for trivial changes. Each data point is provided with its 494 
typical error (when multiple small-sided games values were combined, the data points represent the mean and the typical 495 
error is adjusted for the number of measures (see methods). 496 
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 499 

Figure 4: Relationship between within-player changes in HRΔ and HRRUN in elite soccer players. 500 

HRRUN : Heart rate during the last 1-min of the 4-min standardised submaximal running protocol. HRΔ: difference between 501 
predicted HR from the GPS variables and the actual HR response. Y and X axes cut out the figure into 4 quadrans. Players in 502 
the upper-right quadran present both greater HRΔ and HRRUN values, suggesting that they lack both generic and specific 503 
fitness. In the bottom-left quadran, players present both lower HRΔ and HRRUN values, suggesting that these players gained 504 
both generic and specific fitness. Finally, some players in the upper-left quadran report greater HRΔ values but lower HRRUN 505 
values, suggestive of generic fitness but a lack of specific fitness. Note that there are no data point in the lower-right quadran, 506 
which would imply an unexpected (less probable) scenario: players unfit at the general level but showing specific fitness. 507 

 508 

  509 



 510 

Figure 5: Between-month changes in the differences between actual and predicted heart-rate. 511 

HRΔ: difference between the HR predicted from the GPS variables and the actual HR. Data points colors and shapes are set 512 
for each player. 513 


