

Monitoring changes in physical performance with heart rate measures in young soccer players

Buchheit M., Simpson M.B., Al Haddad H., Bourdon P.C. and Mendez-Villanueva A.

Physiology Unit, Sport Science department, ASPIRE Academy for Sports

Excellence, Doha, Qatar

Optimizing training process

Monitoring

- ✓ Training load
- ✓ Fatigue/recovery
- ✓ Adaptation to training
 - -Performance
 - -Physiology

Managing / adjusting

✓ Training load and contents

Optimizing training process

Tools in (youth) football:

- ✓ Practical (field)
- ✓ Objective
- ✓ Reliable
- ✓ Non-invasive
- ✓ Non-fatiguing
- ✓ Time-efficient

HR measures: the solution?

HR during (submax) exercise (HRex)

- Cardiorespitory fitness
- Changes related to changes in (endurance) performance (Andrew JAP 1966)
- Fatigue? (Coutts JSMS 2007; Bosquet BJSM 2009)
- Marker of performance decrement? (Brink SJMSS 2010, Schmikli BJSM 2010)

HR recovery (HRR):

- Respond to training loads / volume (Borresen EJAP 2007, Buchheit AmjP 2006)
- Changes related to changes in running performance (both endurance and repeated-sprint ability) (Buchheit MSSE 2008, EJAP 2010a)

HR variability (HRV):

- Cardiorespitory fitness (Buchheit AmJP 2006)
- Changes related to changes in running performance (both endurance and repeated-sprint ability) (Buchheit MSSE 2008, EJAP 2010a)
- Level of homeostasis disturbance → acute impact of exercise (Al Haddad IJSPP 2009)
- Overall training adaptation / recovery (increases when tapering) (Pichot MSSE 2002)
- Psychological stress (Pichot Pflugers Acrch 2002)

Purpose

To verify the validity of using:

- ✓ Submaximal HRex
 - **✓** HRR
- ✓ post-exercise HRV

to **predict changes in physical performance** over an entire competitive season in highly-trained **young soccer players**.

Methods

- 92 young soccer players (age 15.1 +/- 1.5 y)
- 14 hours of combined soccer-specific training and competitive play per week
- Tested 3 times per year
 (i.e., October, January and May)
 - Performance field tests
 - HRex/HRR/HRV measures (i.e., 5'-5' test)

Performance tests

- Anthropometry / Peak Height Velocity (PHV)
- Counter movement jump (CMJ)
- 40-m sprint with 10-m split times
- → Acceleration (1st 10 m) / MSS (best split)
- Repeated-sprint ability (RS)
- Incremental track test (V_{Vam-eval})

Submaximal running test: 5'-5'

5'-5' test: all in one!

5' @ 9 km/h)

5' seated recovery

Data analysis

No overload

- = stable data CV:
- ✓ 3 % for HRex
- ✓ 13% for HRR
- ✓ 10% for HRV

Data analysis

- 65 complete data sets available (46 players)
 - October to January and/or
 - January to May

Substantial (>CV)
decrease in HRex
or increase in HRR
or increase in HRV

Changes in physical performance?

No change in HRex, HRR or HRV Substantial (>CV)
increase in HRex
or decrease in HRR
or decrease in HRV

Changes in physical performance?

- Changes in performances
 - Adjusted for changes in body mass
 - Expressed as Cohen's d

Results

Adjusted for changes in body mass

Results

Results

Adjusted for changes in body mass

Results

Adjusted for changes in body mass

Results

Controlled for changes in body mass

	Baseline values (n pairs of data = 25)		
	HRex	HRR	Ln rMSSD
$V_{ m Vam ext{-}Eval}$	0.47 (0.17;0.69)	Unclear	Unclear
CMJ	Unclear	Unclear	Unclear
Acc	Unclear	Unclear	-0.52
			(-0.23; -0.73)
MSS	Unclear	0.39 (0.07;0.64)	0.57 (0.30;0.76)
RS	Unclear	-0.38	-0.37
		(-0.05; -0.64)	(-0.05; -0.62)

changes in physical performance variables over a season

Conclusions

 Monitoring HRex and HRV is effective in tracking improvements in V_{Vam-Eval}

 The use of HRex, HRR and HRV as systematic markers of physical performance decrements in youth soccer players (Brink SJMSS 2010, Schmikli BJSM 2010) is questioned

Applications

- Monitoring changes in performance
- Assess training effectiveness
- Trainability?
- Acute/chronic fatigue?
- Readiness to perform ?
- → Adjust training contents
- → Adapt playing strategies

When?

- ✓ Start of the season
- ✓ Before/after each training cycle
- ✓ When needed on an individual basis